martes, 14 de marzo de 2017

El silogismo

El silogismo es una forma de razonamiento deductivo que consta de dos proposiciones como premisas y otra como conclusión, siendo la última una inferencia necesariamente deductiva de las otras dos. Fue formulado por primera vez por Aristóteles, ampliamente reconocido como padre fundador de la lógica. El silogismo es la noción central de la lógica aristotélica, pilar fundamental del pensamiento científico y filosófico desde su invención hace más de dos milenios.
Aristóteles publicó los silogismos en su obra lógica recopilada Órganon, de sus libros conocidos como Primeros Analíticos (en griego Proto Analytika, en latín Analytica Priora - idioma con el que se conoció la obra en Europa Occidental).

Los silogismos según Aristoteles


Aristóteles consideraba la lógica como un método de relación de términos. Los silogismos aristotélicos buscan establecer la relación entre dos términos: un sujeto y un predicado, los cuales se unen o separan en juicios. La aparición de posibles conclusiones sobre la relación entre estos dos términos surge de su comparación, por medio de juicios, con un tercer término que hace de "término medio" (tertium comparationis). Así pues, el silogismo consta de dos juiciospremisa mayor y premisa menor, en los que se comparan tres términos (sujeto, predicado y "término medio"), de cuya comparación se obtiene un nuevo juicio como conclusión.
La lógica silogística trata de establecer las leyes que garantizan que, de la verdad de los juicios comparados, o premisas, se pueda obtener con garantía de verdad un nuevo juicio verdadero, o conclusión

La problemática de la lógica silogística


La exposición anterior es la forma más simple y esquemática tradicionalmente presentada como lógica aristotélica.
Sin embargo, la problemática que trata Aristóteles es bastante más compleja. Aristóteles define:
Silogismo es un argumento en el cual, establecidas ciertas cosas, resulta necesariamente de ellas, por ser lo que son, otra cosa diferente.
Aristóteles An. Pr. I 24 b 18-23
Dos aspectos a destacar en su definición:
  • La necesidad, que considera el silogismo como categórico, por considerar que los juicios que lo integran son asimismo categóricos.
  • El fundamento de dicha necesidad, por "ser las cosas lo que son".
Hablar del silogismo categórico supone hablar de lo necesario e incondicionado. Y precisamente incondicionado por estar basado en el “ser de las cosas”.
Aristóteles está pensando en un predicado aprehendido a partir de la experiencia y atribuido por el entendimiento a un sujeto. En el lenguaje apofántico el silogismo manifiesta la verdad, porque el entendimiento humano (entendimiento agente, según Aristóteles) es capaz de llegar a la intuición directa de lo real aunque sea a través de un proceso de abstracción.
Se parte del supuesto de que P es predicado “verdadero” de S (en el sentido de que P manifiesta la "identidad" del ser de S), lo que plantea una cuestión metalógica. Véase verdad.
Aristóteles piensa que el juicio manifiesta “lo que es” como verdadero. El problema entonces es ¿y cómo se predica de un sujeto lo que “no-es”? (V.:aporética).
La lógica aristotélica se encuentra con el problema de los juicios negativos que resuelve no del todo bien.
De hecho en el cuadro de oposición de los juicios Aristóteles estudió con todo detalle problemas que posteriormente no se han tenido en cuenta; en realidad consideró tres figuras y no todos los 19 modos válidos. Aristóteles considera modos perfectos aquellos cuya validez aparece como evidente, siendo los demás imperfectos por cuanto deben ser probados por medio de los modos perfectos, que son los correspondientes a la primera figura: BÁRBARA, CELARENT, DARII, FERIO.
Incluso llegó a considerar tales modos como los axiomas de todo el sistema lógico.
El juicio como “atribución” de un predicado verdadero a un sujeto, (en el sentido de que P manifiesta la "identidad" como "ser del sujeto", en tanto que realidad conocida), plantea el problema de un predicado falso, es decir un no-predicado. ¿Cómo conocemos un no-predicado?...
Lingüísticamente, el problema se disfraza negando el verbo en lugar del predicado como atributo (gramática). De esta forma en vez de decir "Antonio es un no-caballo", (¿qué es un no-caballo?), decimos "Antonio no es un caballo". Pero esto segundo sólo es inteligible bajo el punto de vista extensional de los conceptos, es decir bajo el punto de vista de ser un elemento de un conjunto definido por una propiedad, o lo que es lo mismo por su pertenencia o no-pertenencia a una determinada clase; lo que nos lleva a la lógica de clases.
La lógica moderna simbólica, meramente lógica formal, no tiene conexión con contenido de verdad alguno y supera con claridad estas dificultades; sobre todo con la ventaja de poder tratar proposiciones poliádicas, llamadas así porque tienen más de dos términos (por ejemplo: "Júpiter es mayor que la Tierra y menor que el Sol"),y facilitar enormemente el cálculo lógico, por lo que, de hecho, la lógica aristotélica, como tal, está en claro desuso.
Hans Reichenbach estudia el cuadro de oposición de los juicios considerando los juicios A, E, I, O, como relación de clases y considera que pueden eliminarse los juicios negativos E, O, que son los problemáticos, mediante la anotación de la negación de la clase complementaria.
La notación se hace estableciendo entre el sujeto S y el predicado P, la letra minúscula correspondiente al tipo de juicio. Así tenemos que:
Así no sólo se simplifica la notación sino que de modos que tradicionalmente han sido considerados inválidos, se puede obtener conclusión válida, que la notación clásica hacía imposible.
Por todo ello la interpretación actual de la lógica aristotélica como silogismo es su interpretación como lógica de clases. Tal es el mérito de la obra de Lukasiewicz.
Pero considerar los conceptos universales, como clases plantea el problema de la existencia del individuo como instanciación o compromiso existencial. Pues la clase como propiedad independiente puede considerarse como abstracto universal.Pero los predicados, como atributos, no tienen sentido sin un sujeto gramatical del cual se prediquen porque posea dicha propiedad.
La lógica tradicional no consideraba el problema de la existencia o no existencia del individuo respecto a los conceptos universales, pues se supone que éstos han surgido de la abstracción a partir del conocimiento de los singulares o individuos existentes.


La Falacia 

En lógica, una falacia (del latín: fallacia, ‘engaño’) es un argumento que parece válido, pero no lo es. Algunas falacias se cometen intencionalmente para persuadir o manipular a los demás, mientras que otras se cometen sin intención debido a descuidos o ignorancia. En ocasiones las falacias pueden ser muy sutiles y persuasivas, por lo que se debe poner mucha atención para detectarlas.
El que un argumento sea falaz no implica que sus premisas o su conclusión sean falsas ni que sean verdaderas. Un argumento puede tener premisas y conclusión verdaderas y aun así ser falaz. Lo que hace falaz a un argumento es la invalidez del argumento en sí. De hecho, inferir que una proposición es falsa porque el argumento que la contiene por conclusión es falaz es en sí una falacia conocida como argumento ad logicam.
El estudio de las falacias se remonta por lo menos hasta Aristóteles, quien en sus Refutaciones sofísticas identificó y clasificó trece clases de falacias. Desde entonces, cientos de otras falacias se han agregado a la lista y se han propuesto varios sistemas de clasificación.
Las falacias son de interés no solo para la lógica, sino también para la política, la retórica, el derecho, la ciencia, la religión, el periodismo, la mercadotecnia, el cine y, en general, cualquier área en la cual la argumentación y la persuasión sean de especial relevancia.

Ejemplos


Afirmación del consecuente[editar]



En lógica, la afirmación del consecuente, también llamado error inverso, es una falacia formal que se comete al razonar según la siguiente forma argumental:
  1. Si A, entonces B
  2. B
  3. Por lo tanto, A
Los argumentos de esta forma son inválidos, porque la verdad de las premisas no garantiza la verdad de la conclusión: podría ser que las premisas fueran todas verdaderas y la conclusión aun así sea falsa. Por ejemplo, el siguiente argumento tiene la forma de una afirmación del consecuente:
  1. Si está nevando, entonces hace frío.
  2. Hace frío.
  3. Por lo tanto, está nevando.
Aún cuando ambas premisas sean verdaderas, la conclusión podría ser falsa, porque no siempre que hace frío está nevando. En algunos casos, los argumentos de la misma forma pueden parecer convincentes. Por ejemplo:
  1. Si tuviera la gripe, entonces tendría la garganta irritada.
  2. Tengo la garganta irritada.
  3. Por lo tanto, tengo la gripe.
Sin embargo, la verdad de las premisas no garantiza la verdad de la conclusión, porque existen muchas otras enfermedades que causan que la garganta se irrite, como el resfriado común o la garganta estreptococal.
Por otro lado, en algunos casos es posible que un argumento que afirme el consecuente sea válido. Por ejemplo, cuando A y B expresan la misma proposición: en ese caso el argumento es trivialmente válido. También cuando la premisa de la forma «si A entonces B» realmente es un bicondicional «A si y sólo si B». Por ejemplo:
  1. Si la puerta está abierta, entonces no está cerrada.
  2. La puerta no está cerrada.
  3. Por consiguiente, la puerta está abierta.
Por último, este tipo de razonamiento ilógico fue investigado de forma muy profunda por Peter Wason, quien demostró que aún gente de alto coeficiente intelectual suele pensar de forma bicondicional en un hecho que se debería razonar condicionalmente. Wason demostró esto empíricamente en su "test de las 4 tarjetas", encontrándose con respuestas de razonamiento falaz. Como veíamos, no siempre que hace frío, está nevando, pero la mayor parte de los encuestados demostró que, ante las premisas "si aparece A entonces ocurre B", concluían en "si me encuentro con B entonces esto se debe haber producido por A". Esto nos conduce a concluir que la gente tiende a validar el razonamiento falaz de la afirmación del consecuente.

Resultado de imagen para la falacia


Paradoja


Una paradoja (del latín paradoxa, ‘lo contrario a la opinión común’) o antilogía es una idea extraña opuesta a lo que se considera verdadero a la opinión general. También se considera paradoja a una proposición en apariencia falsa o que infringe el sentido común, pero no conlleva una contradicción lógica, en contraposición a un sofisma que solo aparenta ser un razonamiento verdadero. Algunas paradojas son razonamientos en apariencia válidos, que parten de premisas en apariencia verdaderas, pero que conducen a contradicciones o situaciones contrarias al sentido común. En la retórica, es una figura de pensamiento que consiste en emplear expresiones o frases que implican contradicción. Las paradojas son estímulo para la reflexión y a menudo los filósofos se sirven de ellas para revelar la complejidad de la realidad. La paradoja también permite demostrar las limitaciones de la comprensión humana; la identificación de paradojas basadas en conceptos que a simple vista parecen simples y razonables ha impulsado importantes avances en la ciencia, la filosofía y las matemáticas.


Tipos de paradojas

No todas las paradojas encajan con exactitud en una única categoría. Algunos ejemplos de paradojas son:

Según su veracidad y las condiciones que las forman

Algunas paradojas sólo parecen serlo, ya que lo que afirman es realmente cierto o falso, otras se contradicen a sí mismas, por lo que se consideran verdaderas paradojas, mientras que otras dependen de su interpretación para ser o no paradójica, como:

Paradojas verídicas

Son resultados que aparentan tal vez ser absurdos a pesar de ser demostrable su veracidad. A esta categoría pertenecen la mayor parte de las paradojas matemáticas.
  • Paradoja del cumpleaños: ¿Cuál es la probabilidad de que dos personas en una reunión cumplan años el mismo día?
  • Paradoja de Galileo: A pesar de que no todos los números son cuadrados perfectos, no hay más números que cuadrados perfectos.
  • Paradoja del hotel infinito: Un hotel de infinitas habitaciones puede aceptar más huéspedes, incluso si está lleno.
  • Paradoja de la banda esférica: No es una paradoja en sentido estricto, pero choca con nuestro sentido común debido a que tiene una solución que parece imposible.

Antinomias

Son paradojas que alcanzan un resultado que se autocontradice, aplicando correctamente modos aceptados de razonamiento. Muestran fallos en un modo de razón, axioma o definición previamente aceptados. Por ejemplo, la Paradoja de Grelling-Nelson señala problemas genuinos en nuestro modo de entender las ideas de verdad y descripción. Muchas de ellas son casos específicos, o adaptaciones, de la importante Paradoja de Russell.

Antinomias de definición

Estas paradojas se basan en definiciones ambiguas, sin las cuales no alcanzan una contradicción. Este tipo de paradojas constituye un recurso literario, en cuyo empleo se ha destacado el escritor inglés G. K. Chesterton, a quién se llamó el "príncipe de las paradojas". Sirviéndose de los múltiples sentidos de las palabras, buscaba marcar contrastes que llamaran la atención sobre alguna cuestión comúnmente poco considerada. Estas paradojas, como en su libro "Las paradojas de Mr. Pond" (1936), se resuelven en el transcurso de los relatos al clarificar un sentido o añadir alguna información clave.
  • Paradoja sorites: ¿En qué momento un montón deja de serlo cuando se quitan granos de arena?
  • Paradoja de Teseo: Cuando se han reemplazado todas las partes de un barco, ¿sigue siendo el mismo barco?
  • Paradoja de Boixnet: Pienso, luego existo, mas cuando no pienso, ¿no existo?
  • Ejemplos de Paradoja en Chesterton: "Era un extranjero muy deseable, y a pesar de eso, no lo deportaron". "Una vez conocí a dos hombres que estaban tan completamente de acuerdo que, lógicamente, uno mató al otro".

Paradojas condicionales

Sólo son paradójicas si se hacen ciertas suposiciones. Algunas de ellas muestran que esas suposiciones son falsas o incompletas.
  • El huevo o la gallina: El antiguo dilema sobre qué fue primero, ¿el huevo o la gallina?
  • Paradoja de Newcomb: Cómo jugar contra un oponente omnisciente.
  • Paradoja de San Petersburgo: La gente solo arriesgará una pequeña cantidad para obtener una recompensa de valor infinito.
  • Paradoja del viaje en el tiempo: ¿Qué pasaría si viajas en el tiempo y matas a tu abuelo antes de que conozca a tu abuela?
  • Paradoja de la serpiente: Si una serpiente se empieza a comer su cola, acaba comiéndose absolutamente todo su cuerpo, ¿dónde estaría la serpiente, dentro de su estómago que, a su vez, estaría dentro de ella?
  • Paradoja de Pinocho : ¿Qué pasaría si Pinocho dijera: "Ahora mi nariz crecerá"?. Crecería porque estaría mintiendo, a su vez al crecer su nariz se expresa la validez de la frase propiamente dicha anteriormente como resultado de esto estaría diciendo la verdad ya que pasó lo que predijo, entonces al ser verdad lo que dijo no tendría por qué haberle crecido la nariz.

Según el área del conocimiento al que pertenecen

Todas las paradojas se consideran relacionadas con la lógica, que antiguamente se consideraba parte de la filosofía, pero que ahora se ha formalizado y se ha incluido como una parte importante de la matemática. A pesar de ello, muchas paradojas han ayudado a entender y a avanzar en algunas áreas concretas del conocimiento.

Paradojas en matemática

Paradojas en probabilidad y estadística
  • Paradoja del cumpleaños: ¿Cuál es la probabilidad de que dos personas en una reunión cumplan años el mismo día?
  • Paradoja de Simpson: Al agregar datos, podemos encontrar relaciones engañosas.
  • Paradoja de Arrow: No puedes tener todas las ventajas de un sistema de votación ideal al mismo tiempo.
  • Problema de Monty HallY tras la puerta número dos... (¿Por qué la probabilidad no es intuitiva?)
  • Paradoja de San Petersburgo: Cómo no merece la pena arriesgar mucho para ganar un premio infinito.
  • Fenómeno Will Rogers: Sobre el concepto matemático de la media, trata sobre la media o mediana de dos conjuntos cuando uno de sus valores es intercambiado entre ellos, dando lugar a un resultado aparentemente paradójico.
  • Paradoja de los dos sobres: Uno de los sobres contiene el doble de dinero que el otro. Sin importar cuál de los dos sobres esté en mi poder, las probabilidades siempre indican que es favorable cambiarlo por el sobre restante.

Paradojas en lógica

A pesar de que todas las paradojas se consideran relacionadas con la lógica, hay algunas que afectan directamente a su bases y postulados tradicionales.
Las paradojas más importantes relacionadas directamente con el área de la lógica son las antinomias, como la paradoja de Russell, que muestran la inconsistencia de las matemáticas tradicionales. A pesar de ello, existen paradojas que no se autocontradicen y que han ayudado a avanzar en conceptos como demostración y verdad.

Paradojas sobre el infinito

El concepto matemático de infinito, al ser contrario a la intuición, ha generado muchas paradojas desde que fue formulado. Es importante resaltar que estos casos muestran una paradoja pero no en el sentido de una contradicción lógica, sino en el sentido de que muestran un resultado contrario a la intuición, pero demostrablemente cierto.
  • Paradoja de Galileo: A pesar de que no todos los números son números cuadrados, no hay más números que números cuadrados.
  • Paradoja del hotel infinito: Un hotel de infinitas habitaciones puede aceptar más huéspedes, incluso si está lleno.
  • Conjunto de Cantor: Cómo quitar elementos de un conjunto y que siga teniendo el mismo tamaño.
  • Cuerno de Gabriel (o Trompeta de Torricelli): ¿Cómo puede ser necesaria una superficie infinita para contener un volumen finito?
  • Paradojas de Zenón. Mediante el concepto de división al infinito, Zenón trató de demostrar que el movimiento no puede existir, confirmando así la filosofía de su maestro, Parménides. Las más conocidas son la «dicotomía» y la paradoja de «Aquiles y la tortuga».

Paradojas en geometría

Paradojas en física

Richard Feynman en sus Lectures on Physics, aclara que en la Física realmente no existen las paradojas, sino que en las paradojas físicas hay siempre una mala interpretación de alguno o ambos razonamientos que componen la paradoja. Esto no es necesariamente válido en otras disciplinas donde las paradojas reales pueden existir.
  • Paradoja de Bell: Plantea un problema clásico de relatividad especial.
  • Paradoja de Olbers: ¿Por qué, si hay infinitas estrellas, el cielo es negro? Olberts calculó que la luminosidad del cielo correspondería a una temperatura del orden de los 5.500 °C, que, de hecho, no se observa. Actualmente se sabe que la luminosidad calculada por Olberts no llega a ser tal por el importante corrimiento al rojo de las fuentes de luz más alejadas, hecho que la teoría más aceptada atribuye al alejamiento de las galaxias o expansión del universo. Además se oponen la edad finita del universo, sus cambios notables durante su historia y que la cantidad de galaxias no es infinita. La paradoja proviene de un tiempo en el que no se conocían las galaxias y tendía a creerse que el universo era infinito y estático, por lo que también era plausible que hubiera infinitas estrellas.8
  • Paradoja de Maxwell o Demonio de Maxwell: Una aparente paradoja clásica de la termodinámica.
  • Paradoja de los gemelos: Cuando uno de los hermanos regresa de un viaje a velocidades cercanas a las de la luz descubre que es mucho más joven que su hermano.
  • Paradoja de Einstein-Podolsky-Rosen: Una paradoja sobre la naturaleza de la mecánica cuántica propuesta por estos tres físicos.
  • Paradoja de Fermi: Si el Universo estuviera poblado por civilizaciones avanzadas tecnológicamente, ¿dónde están?
  • El experimento de Young. Una paradoja cuántica en su versión electrón a electrón. En el experimento de Young se pueden hacer pasar electrones por una doble rendija uno a uno de manera corpuscular, como si fueran partículas, obteniéndose sin embargo una figura de interferencias.
  • Paradoja de Schrödinger: La paradoja por excelencia de la mecánica cuántica.
  • Paradoja de D'Alembert: Relacionada con la resistencia de los cuerpos ante fluidos viscosos y no viscosos, en Mecánica de Fluidos.

Paradojas en economía

  • Paradoja de Abilene: Un grupo de personas frecuentemente toman decisiones contra sus propios intereses.
  • Paradoja del ahorro: Si todo el mundo trata de ahorrar durante una recesión, la demanda agregada caerá y los ahorros totales de la población serán más bajos, esta paradoja es similar a la paradoja de Kalecki.
  • Paradoja de Allais: En cierto tipo de apuestas, aun cuando la gente prefiere la certeza a la incertidumbre, si se plantea de manera diferente el problema, preferirán la incertidumbre que antes rechazaban.
  • Paradoja de Bertrand: Dos jugadores que alcanzan el mismo equilibrio de Nash se encuentran cada uno sin ningún beneficio.
  • Paradoja del pájaro en el arbusto: ¿Por qué las personas evitan el riesgo?
  • Paradoja del valor (o paradoja del diamante y el agua): ¿Por qué es más barata el agua que los diamantes, siendo que los humanos necesitan agua, y no diamantes, para sobrevivir?
  • Paradoja de Edgeworth: Con restricciones de capacidad, no puede haber ningún equilibrio.
  • Paradoja de Ellsberg: En cierto tipo de apuestas, aun cuando sean lógicamente equivalentes las personas apostar por algo que contra algo, es decir, obtienen mayor utilidad apostando a favor.
  • Paradoja de Gibson: ¿Por qué están los tipos de interés y los precios positivamente correlacionados?
  • Paradoja de Giffen: ¿Puede ser que los pobres coman más pan aunque suba su precio?
  • Paradoja de Jevons: Un incremento en la eficiencia conlleva un mayor incremento en la demanda.
  • Paradoja de Kalecki de los costes: Un descenso generalizado de los salarios (reducción de costes) y precios fijos lejos en lugar de aumentar los beneficios reducen las ventas por una caída de la demanda agregada.
  • Paradoja de Leontief: Algunos países exportan bienes intensivos en trabajo e importan bienes intensivos en capital, en contradicción con la teoría de Heckscher-Ohlin.
  • Paradoja de Parrondo: Es posible jugar en dos juegos que ocasionan pérdidas alternativamente para acabar ganando.
  • Paradoja de San Petersburgo: Cómo no merece la pena arriesgar mucho para ganar un premio infinito
  • Paradoja del votante: Cuantas más personas participen en una elección por votación, menor será el beneficio de ir a votar, al ser cada votante menos decisivo.

        Resultado de imagen para la paradoja ejemplos    Imagen relacionada

No hay comentarios.:

Publicar un comentario